
CANCER

Intertumoral lineage diversity and immunosuppressive
transcriptional programs in well-differentiated
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Neuroendocrine tumors (NETs) are rare cancers that most often arise in the gastrointestinal tract and pancreas.
The fundamental mechanisms driving gastroenteropancreatic (GEP)–NET growth remain incompletely elucidat-
ed; however, the heterogeneous clinical behavior of GEP-NETs suggests that both cellular lineage dynamics and
tumor microenvironment influence tumor pathophysiology. Here, we investigated the single-cell transcrip-
tomes of tumor and immune cells from patients with gastroenteropancreatic NETs. Malignant GEP-NET cells
expressed genes and regulons associated with normal, gastrointestinal endocrine cell differentiation, and
fate determination stages. Tumor and lymphoid compartments sparsely expressed immunosuppressive
targets commonly investigated in clinical trials, such as the programmed cell death protein–1/programmed
death ligand–1 axis. However, infiltrating myeloid cell types within both primary and metastatic GEP-NETs
were enriched for genes encoding other immune checkpoints, including VSIR (VISTA), HAVCR2 (TIM3), LGALS9
(Gal-9), and SIGLEC10. Our findings highlight the transcriptomic heterogeneity that distinguishes the cellular
landscapes of GEP-NET anatomic subtypes and reveal potential avenues for future precision medicine
therapeutics.
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INTRODUCTION
Neuroendocrine tumors (NETs) are rare cancers of the diffuse neu-
roendocrine system, and while they represent less than 1% of all
newly diagnosed malignancies in the United States per year, the
population prevalence is estimated to exceed 100,000 individuals
(1–3). The diagnosed incidence of GEP-NETs has risen markedly
over the past four decades, a persistent trend ascribed partially to
improved tumor classification and diagnostic technologies (1, 2,
4). Approximately two-thirds of all NETs are gastroenteropancreat-
ic (GEP) in origin, predominantly in the pancreas (12 to 30% of
GEP-NETs), stomach, and small intestine (31 to 50% of GEP-

NETs) of older adults (3, 5). While patients with localized disease
can be cured with surgical resection, these tumors are often identi-
fied at a late clinical stage. Despite rapid advancements in NET re-
search and clinical investigation, treatment options for such patients
remains limited (5).

A limiting factor in developing novel therapies for NETs is that
the fundamental biology of GEP-NETs remains incompletely un-
derstood. Previous investigations have been challenged by limited
tissue availability and a scarcity of representative in vitro and in
vivo experimental models. Characteristic genomic mutations in
these tumors most often occur in tumor suppressor genes
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associated with hereditary endocrine cancer syndromes, including
multiple endocrine neoplasia type 1 (MEN1), von Hippel-Lindau
disease (VHL), or tuberous sclerosis (TSC1/2) (6). Chromosomal
loss, telomere alterations, and epigenetic modifications have
emerged as potential regulators of GEP-NET development but are
not sufficiently targeted by currently available treatments (7, 8). The
inter- and intratumoral heterogeneity of GEP-NETs at different an-
atomical sites (e.g., pancreas, small intestine, and stomach) poses an
additional challenge to understanding the oncogenic mechanisms
driving tumor formation in these disparate environments.

High-resolution delineation of the tumor and immune niches of
GEP-NETs has the potential to elucidate previously unknown, ac-
tionable targets for future precision medicine endeavors, expanding
the limited menu of therapeutic options available to patients with
nonresectable tumors. Previous investigations to this end have
used immunohistochemical or bulk RNA sequencing approaches,
but these methodologies are insufficient to identify rare or
unknown cell states that contribute to tumor biology and progres-
sion. Single-cell RNA sequencing (scRNA-seq) of other gastrointes-
tinal solid tumors has enabled high-resolution characterization of
the cell subpopulations within the cancer microenvironment,
thereby overcoming the challenges presented by older technologies
(9–12). We therefore hypothesized that dissecting the transcriptom-
ic landscape of GEP-NETs at single-cell resolution would elucidate
shared and distinct cellular phenotypes and genetic programming
among these heterogeneous tumors.

RESULTS
Characterizing the cellular landscape of GEP-NETs
We collected fresh surgical resection specimens from eight patients
with well-differentiated NETs, comprising four pancreatic NETs
(pNETs), three small intestinal NETs (siNETs), and one gastric
NET (gNET). The siNET and gNET samples included tissue from
regional extension of the primary tumor. Resection tissue was dis-
sociated and divided in two for parallel processing; one-half of each
cell suspension sorted for viability using flow cytometry for scRNA-
seq using the 10x Genomics platform, while the other was flow
sorted for both CD45 positivity and viability before undergoing
10x processing (Fig. 1A and Methods). Of the eight samples in
our cohort, five had received no previous therapy, while the remain-
ing three tumors had been treated with the somatostatin analog lan-
reotide. The gNET had been treated with both lanreotide and
everolimus and chemotherapy with capecitabine and temozolomide
(Fig. 1B). Our cohort also included one primary-metastasis pair
from the same patient (sinet2 and sinet3; Fig. 1B).

After preprocessing and quality control, our single-cell atlas con-
tained high-quality transcriptomes from 24,048 cells spanning both
tumor and immune compartments (Fig. 1C and Methods). Across-
dataset integration of all cells (CD45+ sorted and non–CD45+
sorted) was performed using the Harmony algorithm to mitigate
batch effects stemming from technical or biological variances
between individual patients, tissue collection, and sample process-
ing (Fig. 1, C and D, and Methods). Using differential gene expres-
sion analysis, we identified cluster-specific marker genes that
enabled us to subcategorize the lymphoid and myeloid immune
compartments (Fig. 1C and fig. S1A). Tumor cells were identified
as cells differentially expressing NET-related marker genes and

demonstrating inferred copy number variation compared to refer-
ence normal cells (fig. S1C and Methods).

We then compared the microenvironmental composition of
GEP-NETs from distinct sites of origin (Fig. 1E). In general,
myeloid cells including macrophages, monocytes, and dendritic
cells (DCs) represented the largest immune subpopulation within
pNETs, while siNETs and the gNET contained a relatively higher
proportion of T cells and natural killer (NK) cells (Fig. 1E). Cell
type proportions varied between GEP-NETs from the same site of
origin, reflecting the intrinsic heterogeneity of these tumors.

Differential expression analysis and gene regulatory
network inference reveal multilineage profiles of pNETs
We next interrogated the transcriptional landscapes of GEP-NET
cells from different anatomical sites of origin (Fig. 2A). All
tumors expressed known NET markers such as chromogranin
genes CHGA and CHGB (Fig. 2B). While most tumors expressed
somatostatin receptor 2 (SSTR2), no GEP-NET expressed SSTR5
(Fig. 2B). We also interrogated commonly mutated genes in
pNETs to assess their expression levels across GEP-NETs. ATRX,
a somatic mutation identified in pNETs, was heterogeneously ex-
pressed across GEP-NET subtypes; DAXX, conversely, was either
minimally or not expressed by any tumor (Fig. 2B). Mutations of
ATRX and DAXX in pNETs are often inactivating or missense in
nature, which could explain the paucity of expression we identified
here (13).

To compare the transcriptional profiles of pNETs and siNETs,
we then performed differential gene expression on all tumor cells
from those anatomical sites. Primary and metastatic siNETs exhib-
ited relatively homogeneous transcriptional landscapes compared
to pNETs and featured genes involved in monoamine and
hormone synthesis (e.g., TAC1 and TPH1) and neuroendocrine
transport and vesicle release (e.g., SYT13 and SLC18A1) (Fig. 2C),
concordant with established profiles of carcinoid tumors. The
pNETs in our cohort displayed marked intertumoral heterogeneity,
with few differentially expressed genes common to all four tumors
(Fig. 2C). However, all pNETs expressed genes involved in pancreas
exocrine (e.g., CCK and SPINK1) and endocrine function (e.g., INS,
VIP,GCG, and PPY) (Fig. 2C). The neuroendocrine genes expressed
by each tumor corresponded closely to its clinical profile; for
example, pnet2 demonstrated the highest expression of the
insulin-encoding gene INS, matching its pathological characteriza-
tion as a well-differentiated insulinoma (Fig. 2C).

Next, we sought to identify regulatory elements underlying the
heterogeneous molecular profiles of GEP-NETs from different an-
atomical sites. To this end, we performed single-cell regulatory
network inference and clustering (SCENIC) analysis on malignant
cells from each tumor. We identified the top regulons for each
tumor by the area under the curve (AUC) value as calculated by
the standard pySCENIC workflow (Fig. 2D and Methods). Hierar-
chical clustering of NETs by regulon activity produced two major
subgroups that did not segregate solely by anatomical location; the
first contained most pNETs and the gNET sample, while the other
comprised all siNETs and pnet1. Within our pNET samples, one
tumor (pnet2) displayed differential activity of the transcription
factors (TFs) PDX1, PAX6, MAFA, NKX6-1, and RXRG (Fig. 2D).
These TFs are known regulators of beta cell fate in healthy human
pancreatic islets, consistent with the clinical diagnosis of insulino-
ma (14–17). Another pNET (pnet1) displayed differential activity of
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Fig. 1. Characterizing the cellular landscape of pancreatic, small intestinal, and gNETs. (A) NET scRNA-seq workflow. Resected tumor fragments were dissociated
into single-cell suspensions, which were then divided for parallel sequencing of (i) nonsorted single cells and (ii) fluorescence-activated cell sorting (FACS) sorted, CD45+

immune cells. All samples were processed using the 10x Genomics platform. (B) Patient demographics and treatment summary at time of tumor resection. Site: SI, small
intestine; SI/liver: small intestinal primary tumor with liver metastasis. A bar underneath samples indicates that they originate from the same patient. (C) UMAP of ma-
lignant and nonmalignant cells from all tumors, colored by general cell type. (D) UMAP of malignant and nonmalignant cells from all tumors, colored by sample of origin
(left). (E) Cellular composition of each tumor, colored by general cell type.
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Fig. 2. GEP-NET cells do not express common immune checkpoint targets. (A) UMAP plot of all malignant cells from all GEP-NET samples, colored by sample of origin.
(B) Violin plots of genes commonly expressed in GEP-NETs, grouped and colored by sample. (C) Heatmap of scaled, normalized average expression of top 50 differentially
expressed genes between pancreatic (pn) and small intestinal (si) NETs. (D) Heatmap of scaled expression of the top five differentially expressed regulons per individual
tumor. Blue-labeled genes indicate involvement in enteroendocrine differentiation or regulation of intestinal stem cell fate. Red-labeled genes indicate TFs with known
involvement in endocrine pancreas development and pNET biology. (E) UMAP plots of malignant cells from all pNETs, colored by tumor of origin (top), followed by
heatmaps in UMAP space of VISION signature scores for cell type–specific genes for the major cells in the normal human endocrine pancreas (bottom). (F) Dotplot
of percent expression of common, targetable immune checkpoint and evasion genes, grouped by sample. (G) Representative immunohistochemical staining of CD8,
PD-1, and PD-L1 two siNET samples. PD-1 and PD-L1 expression was low to nonexistent across all stained samples, consistent with low transcriptional expression by
scRNA-seq. Scale bars, 100 μm. DAPI, 40 ,6-diamidino-2-phenylindole.
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the ARX TF, which primarily directs pancreas alpha cell develop-
ment but also has known roles in establishing pancreatic gamma
cell fate in healthy islets of Langerhans (Fig. 2D) (18, 19). These
data are consistent with a previous investigation of enhancer pro-
files of nonfunctional pNETs, which found that those tumors
could be stratified into twomajor groups by PDX1 and ARX activity
(19). However, two of our pNETs did not express either PDX1 or
ARX. Pnet4 displayed differential activity of TCF12, which has
been implicated in pancreatic and gastrointestinal cancer prolifera-
tion and invasion, while pnet3’s top regulon, RARB, was previously
found to direct differentiation of embryonic stem cells to pancreatic
endocrine cells in vitro (20, 21). Few common TFs were identified
across NET samples, revealing the heterogeneity within and
between GEP-NETs from different anatomical sites.

Within our siNET samples, we identified differential activity of
TFs associated with regulation of enteroendocrine cell lineages
(NEUROD1 and FOXA1) and with the maintenance of intestinal
stem cell fate (KLF5), concordant with a leading hypothesis in the
field of NET biology that siNETs develop from enterochromaffin
cells in the gut (Fig. 2D) (22–24). The lone siNET metastasis
sample (sinet3) displayed highly differential activity of homeobox
(HOX) TFs, including HOXB6 and HOXB13 (Fig. 2D). Previous
analysis of primary human fetal small intestinal tissue revealed
that HOXB gene expression is strongest early in duodenal develop-
ment but quickly diminishes over time (25). The HOXB family was
not represented amongst the top regulons for either primary siNET
in our cohort, suggesting that the siNETmetastasis may have under-
gone dedifferentiation to resemble an earlier stage of small intestinal
fate determination (Fig. 2D).

To determine the transcriptional similarity of our four pNET
tumors to healthy, mature pancreatic islet cells, we scoredmalignant
cells from each tumor with curated gene signatures specific to alpha,
beta, gamma, and delta cells in mature human pancreatic islets
(Fig. 2E) (26). Tumor cells from pnet1 displayed robust expression
of alpha cell and gamma cell gene signatures, with lower expression
of the delta cell signature (Fig. 2E); these findings are consistent
with the robust expression of gamma and delta cell hormones
PPY and VIP and elevated ARX TF activity identified in our previ-
ous analyses. Similarly, as predicted by the results of our differential
gene expression and gene regulatory network (GRN) analysis, pnet2
was the tumor with the highest expression score for the beta cell sig-
nature (Fig. 2E). Pnet3 and pnet4 scored most highly for the alpha
cell signature with lower expression of delta and gamma cell scores
(Fig. 2E). Together with the results of our regulatory network anal-
ysis, these data demonstrate tumor cell resemblance to earlier stages
of gastrointestinal development and the potential for lineage plas-
ticity in these rare tumors.

GEP-NET cells do not express classical immune checkpoint
blockade targets
The success and ongoing studies of immunotherapy in other solid
tumor types have motivated a strong interest in applying this ther-
apeutic approach to the treatment of GEP-NETs. We therefore next
sought to quantify the expression of classical, tumor cell–anchored
immunotherapy targets across the GEP-NETs (Fig. 2F). Pro-
grammed death ligand–2 (PDL2), which binds programmed cell
death protein 1 (PD-1) on the surface of T cells to suppress antitu-
moral immunity, was not expressed in any GEP-NETs in our
cohort. PDL1, which also binds to PD-1 to negatively regulate T

cell immunity, was expressed at low levels in fewer than half of
tumors. Although roughly 40% of gNET cells expressed HLA-G, a
recently described immunomodulatory ligand, all other tumors
rarely expressed this gene; anatomical location, pathological
grade, and treatment history may therefore drive this differential ex-
pression (27). LGALS9 (also known as Gal-9), VSIG, and VSIR,
other regulators of T cell anergy and exhaustion, were also sparsely
expressed but were identified in a greater proportion of tumors
than PDL1.

Next, we sought to validate the low expression of the PD-1/PD-
L1 immunosuppressive axis in GEP-NETs at the protein level. To
do this, we performed multiplex immunofluorescence staining of
PD-1 and PD-L1 in formalin-fixed, paraffin-embedded (FFPE)
tissue from small intestinal and pNETs in our cohort using the Im-
munoProfile platform (28). Across all stained samples, we identified
very few PD-1– or PD-L1–positive cells in the tumor microenviron-
ment and found no positive cells in the tumor compartment
(Fig. 2G and fig. S2, A to C). Together, our observations can
inform future clinical investigation into the use of anti–PD-1/PD-
L1 immunotherapies versus emerging immunotherapy options in
patients with well-differentiated GEP-NETs.

Given the demonstrated efficacy of the mammalian target of ra-
pamycin (mTOR) inhibitor everolimus in the treatment of patients
with advanced GEP-NETs, we also investigated the expression of
mTOR pathway genes in our cohort (29). We scored all malignant
cells with the “PI3K/AKT/mTOR Signaling” gene signature from
the HALLMARK collection in Molecular Signatures Database
(MSigDb; fig. S2, D and E) and performed pairwise score compar-
isons to establish the significance of expression differences (Wilcox-
on two-sided test, P < 0.05). The siNETs and gNET in our cohort
scored significantly higher for the PI3K/AKT/mTOR Signaling sig-
nature compared to the pNETs (fig. S2D). The metastatic tumor
sinet3 had a lower signature score than its primary counterpart
(sinet2). Functional follow-up will be required to determine the cor-
relation between gene signature score and everolimus response
across GEP-NET subtypes, but our findings demonstrate heteroge-
neity in mTOR signaling across GEP-NETs from different sites
of origin.

Profiling lymphoid cell heterogeneity in GEP-NETs
To better understand the immune microenvironment of GEP-
NETs, we next analyzed the lymphoid compartment of our
dataset. We selected all T and NK cells from the full scRNA-seq
atlas using canonical marker genes (fig. S1A and Methods) for de
novo clustering and differential gene expression analysis (fig. S3, A
and B). We identified diverse T and NK cell populations including
NK cells (FGFBP2+ and FGFBP2−), resting and effector CD4+ T
cells, regulatory T cells (Tregs), CD8+ T cells, T helper 17 cells
(TH17), and mucosal-associated invariant T cells (MAITs) (Fig. 3,
A and B). These T and NK cell types were identified in differing
proportions across GEP-NET site of origin, with the gNET contain-
ing the highest proportion of Tregs across samples (Fig. 3A). We also
classified B cells from our original dataset, the majority of which
originated in either the gNET or siNETs (fig. S3C). Of the six B
cell clusters identified in our analysis, two contained IL4R-express-
ing naïve B cells, while the other four comprised CD27-expressing
memory B cells (fig. S3, D and E).

The higher expression of immune checkpoint genes in 4-1BB-hi
CD8+ T cells compared to other CD8+ T cells across all GEP-NETs
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Fig. 3. Classifying T cell and NK cell populations within GEP-NETs. (A) UMAP (top) of T cells and NK cells from all tumors, colored and labeled by lymphoid subtype.
Barplot (bottom) displays T/NK cell type proportion by sample. (B) Heatmap of scaled, normalized expression of top 15 differentially expressed genes per T/NK cell
subtype. Specific subtype-determining genes are annotated at right. (C) UMAP of CD8+ T cells from all tumors, colored by CD8+ T cell subtype (left) and NET origin
site (right). (D) Expression heatmaps in UMAP space of naïve (TCF7 and CCR7), memory (IL7R), and exhausted (TOX) CD8 T cell markers as well as coinhibitory receptor
TIM3 in CD8+ T cells. (E) Dotplots of percent of T cell subtypes expressing known immunosuppressive genes, grouped and colored by NET site.
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motivated us to investigate the exhaustion phenotypes present in
infiltrating CD8+ T cells. For this analysis, we included all cell
types with nonzero expression of CD8A or CD8B: 4-1BB-hi CD8+
T cells, 4-1BB-lo CD8+ T cells, and MAITs. We first isolated all
CD8+ cells from our T and NK cell dataset, which yielded two
major subclusters (Fig. 3C). One cluster contained mostly 4-1BB-
hi CD8+ T cells from the gNET sample, while the other cluster rep-
resented a mixture of all three CD8+ T cell types from all GEP-NET
sites of origin. To further delineate CD8+ T cell subtypes, we inter-
rogated the transcription expression patterns of genes previously
identified in stem-like T cells (TCF7), memory T cells (IL7R and
CCR7), activated T cells (CD27), and exhausted T cells (TOX and
HAVCR2/TIM3) (Fig. 3D). Expression levels of TCF7 and IL7R
were highest in MAIT and 4-1BB-lo CD8+ T cells, while TOX and
TIM3 displayed the exact opposite expression pattern. These find-
ings are consistent with previous single-cell analyses in renal cell
carcinoma, which identified high expression of exhaustion
markers among 4-1BB-hi CD8+ T cells (30).

To evaluate the potential therapeutic targets in the GEP-NET
milieu using current immunotherapies, we quantified the expres-
sion of known, lymphoid-intrinsic immune checkpoint ligands
on the T andNK cells in our atlas.CTLA4 andTIGITwere expressed
robustly and frequently in Tregs across all GEP-NET subtypes (i.e.,
pNETs, siNETs, and gNETs) (Fig. 3E). LAG3, HAVCR2 (encoding
TIM3), and PDCD1 (encoding PD-1) were sparsely expressed in T
and NK cells from pNETs and siNETs. The lymphoid compartment
of our one gNET sample demonstrated the highest expression of all
queried immunosuppressive markers, with up-regulation in the 4-
1BB-hi CD8+ T cell, Tregs, FGFBP2− NK cell, and cycling popula-
tions (Fig. 3E). The gNET sample had the highestWorld Health Or-
ganization (WHO) Grade [grade 3 (G3)] of all analyzed samples
and was the only tumor to receive treatment with everolimus and
chemotherapy in addition to a somatostatin analog (Fig. 1B),
which may influence the up-regulation of immune checkpoint ex-
pression in its T and NK cells. Determining the roles of grade and
treatment history in this phenomenon will necessitate expanded
serial biopsy cohorts for future analysis.

Myeloid cells in GEP-NETs express targetable
immunosuppressive ligands
Given the limited expression of classical immune checkpoint
ligands and receptors on lymphoid cells in the GEP-NET microen-
vironment, we next sought to characterize the myeloid cells within
our cohort. We subset all myeloid cells (n = 4820 cells) from our
original dataset using known marker genes and reclustered them
to identify monocytes (CD16+ and CD16−), DCs (CLEC10A-high
DCs, CLEC9A-high DCs, and CD207+ DCs), and tumor-associated
macrophages (FOLR2-high TAMs and SELENOP-high TAMs)
(Fig. 4A and fig. S4, A and B). The proportion of myeloid cell
types was similar across all tumors, and we did not identify any
patient-specific or GEP-NET subtype–specific myeloid populations
(Fig. 4A).

To determinewhether myeloid cells in GEP-NETs expressed tar-
getable immune checkpoint ligands, we then quantified the expres-
sion of immunosuppressive genes across our nine myeloid clusters.
As in the tumor compartment, PDL1 and PDL2 were expressed in
fewer than 20% of any given myeloid subtype (Fig. 4B). VSIG4, an
inhibitor of both cytotoxic T cell and proinflammatory macrophage
activation, was expressed most strongly in FOLR2-hi TAMs (31, 32).

Both TIM3 and its binding partner Galectin-9 were more broadly
expressed across both TAM and DC subtypes, suggesting an
ability of these cells to suppress the activity of cytotoxic T cells.
Last, the immunosuppressive ligands VSIR and SIGLEC10, which
regulate antitumoral macrophage activity, displayed robust expres-
sion across the myeloid compartment; VSIR specifically was ex-
pressed in over 60% CD16+ monocytes and in more than half of
SELENOP-hi and FOLR2-hi TAMs (33).

To better define the diversity of tumor-infiltrating macrophage
phenotypes in GEP-NETs, we isolated the four TAM clusters and
performed single-cell pathway enrichment analysis using the
HALLMARK genesets from the Molecular Signature Database
(Methods). The most significantly enriched pathways included (i)
tumor necrosis factor–α (TNF-α) signaling via nuclear factor κB,
(ii) interferon-γ (IFN-γ) response, (iii) interleukin-2 (IL-2)/signal
transducers and activators of transcription 5 (STAT5) signaling,
and (iv) genes involved tumor growth factor–β signaling. Using
the signature scoring protocol outlined in Neftel et al. (34), we
then scored each TAM for expression of each of the four geneset
signatures, also referred to as metamodules. We visualized the
results of this scoring analysis as a two-dimensional butterfly plot
wherein each quadrant represents a specific metamodule (Fig. 4C,
left). FOLR2-hi TAMs scored highly across all four metamodules,
while SELENOP-hi TAMs predominantly expressed TNF-α signal-
ing and IFN-γ response genes (Fig. 4C, center). Grouping TAMs by
tumor site of origin revealed that while TAMs from pNETs span all
four metamodules, TAMs from siNETs and the gNET predomi-
nantly differentially score for the IFN-γ response signature
(Fig. 4C, right).

Next, we assessed whether GEP-NET TAMs could be defined ac-
cording to the traditional, albeit debated, M1 versus M2 macro-
phage binary classification system (35, 36). M1 macrophages are
generally considered proinflammatory and antitumoral, whereas
M2 macrophages display immunosuppressive activity. To this
end, we scored all TAMs in our cohort for curated gene signatures
for M1 or M2 macrophage states (Fig. 4D). Consistent with similar
single-cell analyses in other cancer types, GEP-NET TAMs did not
separate neatly into M1 or M2 groupings; for example, FOLR2-hi
TAMs scored relatively highly for both the M1 and M2 signatures.

We next sought to determine whether GEP-NET infiltrating
TAMs displayed different chemokine profiles depending on the
tumor site of origin. We performed a differential gene expression
analysis within all TAMs in a given subtype grouped by tumor
site of origin (i.e., pancreatic, small intestinal, or gastric) and exam-
ined the top five differentially expressed genes (Fig. 4E). All TAMs
originating from pNETs displayed increased expression of chemo-
kines CCL3, CCL4, CCL4L2, and CCL3L1 (Fig. 4, E and F). FOLR2-
hi TAMs from siNETs differentially expressed chemokine CCL24,
while FOLR2-hi TAMs and SELENOP-hi TAMs in the gNET
sample had the highest expression of CXCL9 and CXCL10 (Fig. 4,
E and F). CCL3, CCL4, CXCL9, and CXCL10 are known to recruit
activated T cells via binding to the CXCR3 receptor, suggesting that
FOLR2-hi and SELENOP-hi TAM subtypes identified in our cohort
may have a role in orchestrating the antitumoral immune response
in pNETs and gNETs. CCL24 has been implicated in activation of
the M2 macrophage phenotype; SELENOP-hi TAMs in our siNETs
may therefore contribute to a protumoral microenvironment. In
summary, our results demonstrate the heterogeneity within the
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Fig. 4. GEP-NET–intrinsic myeloid cells express targetable immunosuppressive ligands. (A) UMAP of myeloid cells (top) from all tumors, colored and labeled by
myeloid cell subtype. Barplot (bottom) displays myeloid cell type proportion by sample. (B) Dotplot of percentage of each myeloid subtype expressing immunosup-
pressive ligand genes. (C) Two-dimensional butterfly plot visualizations of relative metamodule scores of top MSigDB Hallmark Pathways (TNF-α, “TNFA Signaling Via
NFKB;” IFN-γ, “Interferon Gamma Response;” IL-2/STAT5, “IL2 STAT5 Signaling;” and complement = “Complement”) in all GEP-NET–associated macrophages (left) and
separated by TAM subtype (right). (D) Violin plot of VISION scores of M1 macrophage– and M2 macrophage–associated gene signatures, grouped by TAM subtype. (E)
Heatmaps of scaled, normalized, and averaged expression of top differentially expressed genes between GEP-NET sites within each TAM subtype (left, FOLR2-hi TAMs and
right, SELENOP-hi TAMs). (F) Graphical summary of differential chemokine expression patterns between TAMs from GEP-NETs at different anatomical sites.
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myeloid compartments of GEP-NETs and highlight promising
therapeutic vulnerabilities common across GEP-NET subtypes.

Charting the transcriptional heterogeneity and evolution
dynamics between a primary siNET and its metastasis
Our cohort contained a matched primary-metastasis pair from a
patient with siNET, which provided a rare opportunity to investi-
gate the temporal evolution of GEP-NETs. We separated cells
from the primary tumor (sinet2) and its liver metastasis (sinet3)
for combined analysis (Fig. 5A). Both tumors contained a similar
diversity of immune cells despite their different anatomical loca-
tions (Fig. 5A). We then sought to compare the transcriptomic
landscapes of the paired samples. Selection and unsupervised

reclustering of only malignant cells from both tumors revealed
four tumor clusters (Fig. 5B). Sinet2, the primary tumor, comprised
mostly cells from cluster 0 (C0), with a minority of cells distributed
throughout the other three clusters (Fig. 5C). Conversely, malignant
cells from sinet3 fell predominantly in C1 and C2; no cells from the
metastasis were found in C0 (Fig. 5C).

To interrogate the differences in transcriptional programming
between each tumor cluster, we next conducted differential gene ex-
pression analysis on the malignant cells from sinet2 and sinet3
(Methods). We identified high expression of immediate early
genes such as JUN, FOS, and EGR1 in C0; expression of these
genes was also identified in tumor C3 (Fig. 5D). C1 and C2 were
distinguished from the other two clusters by differential expression

Fig. 5. scRNA-seq reveals intratumoral heterogeneity and evolution dynamics in GEP-NETs. (A) UMAP of malignant and immune cells from a primary siNET (sinet2)
and its paired liver metastasis from the same patient (sinet3). Cells are colored by cancer or immune cell type. Tumor cells are represented by the clusters within the
dashed oval. (B) UMAP of only tumor cells from sinet2 and sinet3, colored by Louvain cluster. (C) Donut plots representing percentage of cells found in each cluster from
(B) for sinet2 and sinet3. Plots are colored by clusters as in (B). (D) Heatmap of scaled, normalized, and averaged expression of the top 10 differentially expressed genes
between tumor clusters from (B). (E) Copy number alteration profiles of sinet2 and sinet3. Tumor subclones are indicated by color bars on the left-hand side of each plot.
(F) GSEA of epithelial-mesenchymal transition (top) and KRAS signaling up (bottom) transcriptional signatures in clone 1 cells compared to clone 2 cells from
sample sinet2.
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of neuroendocrine genes such as CHGA and SLC18A1. Given that
C1 and C2 contained mostly cells from sinet3, these data reflect the
course of metastatic evolution of sinet2.

To better understand the differential genetic alterations between
the primary tumor and its metastasis, we inferred copy number var-
iation profiles for both tumors. The primary tumor (sinet2) con-
tained two clones, with clone 1 distinguished from clone 2 by
amplifications in chromosomes 1 and 8 and deletions in chromo-
some 2 (Fig. 5E). Next, we sought to interrogate differences in
genetic programming between the subclones within sinet2 using
gene set enrichment analysis (GSEA; Methods). Clone 1 demon-
strated a high enrichment score for the HALLMARK “Epithelial-
Mesenchymal Transition” geneset, implicating this subclone as a
potential cellular origin for the liver metastasis (Fig. 5F). Clone 2
was enriched for the HALLMARK “KRAS Signaling Up” geneset
(Fig. 5F). While KRAS mutations have been identified in high-
grade pancreatic neuroendocrine carcinomas, further research is re-
quired to understand the potential role of KRAS signaling in GEP-
NET oncogenesis and progression (37). Together, our findings
further support the observation of metastatic transcriptional repro-
gramming in NETs.

DISCUSSION
To elucidate the fundamental cellular compositions and genetic
programming of GEP-NETs, we interrogated single-cell transcrip-
tomes from eight tumors spanning three anatomical sites of origin.
Within our findings are reflections of known biology of NETs. For
example, pNETs uniformly demonstrated high differential expres-
sion of endocrine pancreatic genes and displayedmore intertumoral
heterogeneity compared to other NET subtypes. siNETs expressed
genes associated with monoamine synthesis and neuroendocrine
vesicle biology, consistent with the known tendency of these
tumors to secrete serotonin. Through scRNA-seq analysis,
however, we were also able to further elucidate the transcriptional
and GRN heterogeneity of GEP-NETs. Across our GEP-NET
samples, we identified differentially expressed regulons with estab-
lished roles in neuroendocrine cell differentiation and fate determi-
nation that expressed across various time points of gastrointestinal
development. We further found that the transcriptional profiles of
malignant pNET cells resemble more than one cell type in the
mature human pancreatic islet, including somatostatin-producing
delta cells and pancreatic polypeptide–producing gamma cells.
These data imply the potential for lineage plasticity in GEP-NETs
or an endocrine precursor cell provenance for these tumors, two
possibilities that should be explored in future biological
investigations.

The evolution of NETs as they metastasize remains poorly un-
derstood. While our sample size was limited, we were able to iden-
tify two subclones within one of our primary siNETs, one of which
bore transcriptomic and copy number alteration similarities to the
tumor cells in the patient’s liver metastasis. Cells with robust expres-
sion of the neuroendocrine genes CHGA and SLC18A1 comprised
less than 15% of tumor cells at the primary tumor site but 100% of
cells in the metastasis, suggesting that a phenotypic shift occurred
over the course of tumor progression and metastasis. Our study is
the first to demonstrate the transcriptional dynamics of metastatic
NETs at single-cell resolution; future studies are warranted to

investigate the functional and translational significance of the tran-
scriptional programs we identified in our work.

Immunotherapy has revolutionized cancer treatment over the
past few decades and has demonstrated benefit across several
solid tumor types. Recent clinical trials investigating immunother-
apy in neuroendocrine cancers have focused on targeting classical
checkpoint genes such as CTLA4 and the PD1-PDL1/PDL2 axes in
the lymphoid compartment (38, 39). While many of these studies
are ongoing, preliminary results suggest that undifferentiated,
higher-grade neuroendocrine neoplasms may respond to check-
point inhibition, but that use of checkpoint inhibitors in well-dif-
ferentiated NETs, like those in our study, would yield limited
therapeutic benefit (40–43). Consistent with these clinical observa-
tions, within all GEP-NET cancer cells in our dataset, we identified
little to no expression of currently targetable immune checkpoint
ligands, highlighting the limited treatment options in this disease.
Similarly, within the lymphoid compartment of GEP-NETs, we
further identified relatively low expression of common immuno-
suppressive ligands and receptors across T and NK cell types. 4-
1BB-hi CD8+ T cells and FGFBP2− NK cells from our gNET exhib-
ited the highest expression of immune checkpoint genes; however,
this sample was the only higher grade (WHO G3) tumor of our
cohort and the only one to receive somatostatin analog therapy,
everolimus, and chemotherapy, all factors that could have contrib-
uted to this finding. Further translational studies will be required to
determine the clinical utility of targeting lymphoid cells with im-
munotherapy in well-differentiated NETs.

In contrast, within the myeloid compartment, we observed high
levels of immunosuppressive gene expression in multiple cell types
across GEP-NET sites of origin and within both primary and met-
astatic tumors (fig. S5). Our data highlight opportunities for thera-
peutic strategies in these rare cancers based on targeting alternative
pathways in the myeloid microenvironment of GEP-NETs. For in-
stance, high expression of VSIR across myeloid cells in GEP-NETs
suggests that targeting the VISTA protein could rearm T cells and
macrophages and thereby reinvigorate antitumoral immunity in
these patients. Preclinical studies of the VISTA pathway in multiple
solid tumor models (e.g., pancreatic cancer, melanoma, colorectal
cancer, renal cell carcinoma, and glioma) have affirmed its role in
tumoral immune evasion (33, 44, 45). Early clinical trial data are
assessing the safety profiles of anti-VISTA immunotherapies in
solid tumors that also target the PD-1/PD-L1 checkpoint; per our
findings, well-differentiated NETsmay benefit from this therapeutic
approach and should be considered for inclusion in future trial
cohorts (46, 47). Similarly, we identified expression of HAVCR2
(TIM3) and LGALS9 (Gal-9) in myeloid cells of the GEP-NET mi-
croenvironment. Combination anti-Tim3/anti–PD-1 or anti–Gal-
9/anti–PD-1 therapies have proven efficacious in enhancing T cell
activation in preclinical studies of solid tumors and are currently
under investigation in clinical trials (48–50). Last, inhibitors of
SIGLEC10-CD24 binding between TAMs and cancer cells, respec-
tively, are an emerging focus of preclinical investigation (51). Our
study therefore provides evidence supporting the use of these
emerging immunotherapies, which may one day augment the
limited effective treatment options available to patients with nonre-
sectable GEP-NETs.

Our study has several limitations. While the diversity of our
cohort permits us to assess shared transcriptional programs across
GEP-NET subtypes, our sample size remains relatively small due to
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the rarity of these tumors. Treatment history at the time of surgical
resection also varied between cases; all pNETs and one of the
siNETs were treatment naïve, while the metastatic small intestinal
and gNETs had received at least somatostatin analog therapy. Dif-
ferences in cellular phenotypes and microenvironment composi-
tion may therefore reflect therapeutic pressures and not
necessarily innate biology. To assess these possibilities, future
studies should interrogate large, clinically diverse tumor cohorts
that include GEP-NET subtypes and treatment modalities not rep-
resented in our study. Inclusion of more treatment-naïve cases can
also help to better define innate tumor biology. Last, we here present
an analysis of a singular well-differentiated, G3 gNET, a classifica-
tion defined by the highest mitotic index out of all well-differenti-
ated NETs. Given the high degree of similarity between well-
differentiated G3 GEP-NETs and poorly differentiated, aggressive
neuroendocrine carcinomas, identification, and inclusion of G3
GEP-NETs in studies of well-differentiated tumors demands
careful review by experienced pathology teams. Despite the hetero-
geneity of cases included in our study, our cohort encompasses mul-
tiple, well-differentiated GEP-NET subtypes across diverse
treatment histories; our findings therefore serve as a key foundation
for future basic and clinical investigations into these rare, heteroge-
neous tumors. We anticipate that in addition to further evaluating
our finding of common immunosuppressive myeloid phenotypes,
new axes of shared biology can be identified through future multi-
modal sequencing of the transcriptional and epigenomic landscapes
of GEP-NETs.

From a technical perspective, although wewere able to infer copy
number alteration profiles for each tumor using the inferCNV ap-
proach, verification of these inferred profiles will require patient-
matched whole-genome sequencing. Overall, inferring tumor sub-
clone architecture from single-cell data remains a challenging
problem for the field given the sparsity and sampling biases inher-
ent to scRNA-seq. Future work that obtains matched scRNA-seq
and whole-genome sequencing can robustly characterize malignant
subclones and also examine the influence of a GEP-NET patient’s
genetic background on their tumor’s cellular landscape.

In summary, our findings uncover previously unappreciated het-
erogeneity within NET subtypes and reveal potential evolution in
tumor characteristics as they metastasize. Consistent with other
studies, we also found that in well-differentiated NETs, expression
of checkpoint markers targetable with current standard immuno-
therapies is uncommon. However, we also identified immunosup-
pressive markers in myeloid cells that are commonly expressed in
NETs and may form the basis for future targeted therapies. Our
findings therefore provide an important step in delineating key un-
derlying molecular features of NETs and shed light on potential
novel therapeutic strategies for patients suffering from this chal-
lenging disease.

METHODS
Experimental model and subject details
Human patient samples were collected under Dana-Farber Cancer
Institute IRB protocol #02-314. Informed consent was required for
this study and was obtained as follows: At the time of their clinic
appointments, patients were contacted by a member of the study
staff and asked if they were interested in participating in this re-
search study involving collection of biological samples and clinical

data in patients with NETs. The study was explained in detail to in-
terested patients, and his/her questions were answered. Informed
consent was signed to participate. Patients were specifically con-
sented to (i) allow the collection of tissue, blood, or urine; (ii) to
allow the collection and linkage of clinical data to the tissue; (iii)
to allow for recontact of the patient for the purpose of recruitment
into new clinical protocols, or for the purpose of obtaining clinical
follow-up; (iv) to allow for a one-time additional blood draw or
urine collection for study purposes if not feasible in the context
of a scheduled blood draw; and (v) collection of periodic blood
samples. The consent status of each patient was recorded in the da-
tabase, which allows specific tailoring of data acquisition according
to each patient’s wishes. These measures will ensure that the wishes
of each patient are maintained.

Methods details
Sample collection and dissociation for scRNA-seq
Fresh tissue from surgical resections was collected at Brigham and
Women’s Hospital. Members of the pathology team evaluated sur-
gical specimens to identify tumor tissue. Tumor tissue that was not
required for routine clinical pathological assessment was dissected
away from nontumor tissue using a scalpel and transferred to a 50-
ml conical tube with Hank’s balanced salt solution and transported
on ice. On arrival to the laboratory, tumor samples were transferred
into a 5-ml Eppendorf tube containing 4.5-ml cold enzymatic dis-
sociation mix [collagenase type 4 (100 μg/ml; Worthington Bio-
chemical Corporation, #LS004186) and deoxyribonuclease I (100
μg/ml; StemCell Technologies, #07900) in RPMI + Hepes
(Thermo Fisher Scientific, #22400089)]. The resection tissue was
thenminced inside the tube with spring scissors into <0.5-mm frag-
ments at room temperature. The resulting mixture was incubated
for 10 min in a 37°C water bath with manual inversions every 1
to 2 min to ensure thorough mixing. Next, the mixture was vigor-
ously and repeatedly pipetted using a P1000 pipette at room tem-
perature for further mechanical dissociation. For all samples
except pnet2 and pnet3, the tube containing the mixture was then
returned to the 37°C water bath for an additional 10 min with
manual inversions every 1 to 2 min for thorough mixing.

The cell suspension was then filtered through a 70-μm cell
strainer into a 15-ml conical tube on ice. The strainer was washed
with 5-ml cold RPMI to maximize cellular yield. The filtered cells
then underwent centrifugation at 450g for 5 min at 4°C. The result-
ing supernatant was carefully transferred to a 15-ml conical tube on
ice, taking care not to disturb the pellet. To lyse red blood cells, the
centrifuged cell pellet was resuspended in 300 to 500 μl of ACK
lysing buffer (Thermo Fisher Scientific, #A1049201) and incubated
for 1min on ice. Calcium- andmagnesium-free phosphate-buffered
saline (PBS; Thermo Fisher Scientific, #10010-23) was added in a
volume twice that of the ACK lysing buffer to stop red blood cell
lysis. Cells were transferred to a 1.7-ml Eppendorf tube on ice and
then recentrifuged for 8 s at 4°C with centrifugal force ramping up
to but not exceeding 11,000g. After recentrifugation, cells were re-
suspended in calcium- and magnesium-free PBS with 0.4% bovine
serum albumin (BSA; Ambion, #AM2616). If a large amount of red
blood cells remained after recentrifugation, an additional round of
red blood cell lysis was performed. After satisfactory red blood cell
lysis, the supernatant was carefully transferred to a new 15-ml
conical tube on ice, and the remaining cell pellet was resuspended
in 50 μl of RPMI + Hepes.
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Five microliters of the single-cell suspension was mixed with
Trypan blue (Sigma-Aldrich, #T8154) at a 1:1 volume ratio and
loaded into a hemocytometer for cell counting and assessment of
cell viability, clumping, and debris. At the end of processing, all
samples had viability greater than 51%. Cell suspensions were
then centrifuged and resuspended in either RPMI + Hepes or
RPMI + Hepes with 0.4% BSA in preparation for transport and
downstream flow cytometric processing.
Flow cytometry
Following viability assessment, samples were centrifuged at 600g for
5 min and resuspended in fluorescence-activated cell sorting
(FACS) buffer [1% BSA (Millipore Sigma, product no. EM-2930)
in calcium/magnesium-free PBS (Thermo Fisher Scientific,
product no. 14190144)] and stained with 1 μg of CD45-APC anti-
body (Thermo Fisher Scientific, product no. 50-166-056) for 30min
at 4°C. The samples were washed with 1 ml of FACS buffer and cen-
trifuged at 600g for 5 min before being resuspended in 100 μl of
FACS buffer with 10 μM Stemolecule Y27632 (ROCK inhibitor)
(Stemgent, product no. 04-0012-02). A total of 200 μl of FACS
buffer with calcein blue AM (Thermo Fisher Scientific, product
no. C1429) was added to the sample for live/dead exclusion and
the sample was passed through a 35-μm strainer before sorting.
Two fractions of the samples (live and CD45+) were sorted into
FACS buffer using a Beckman Coulter MoFlo Astrios cytometer.
Single-cell RNA sequencing
For each sample, the live bulk and CD45+ fractions were centrifuged
at 600g for 5 min and resuspended in FACS buffer for a final con-
centration of 600 cells/μl as specified in the 10x Genomics user
guide document number CG000185, Rev. B for an estimated recov-
ery of 3000 cells. These fractions were loaded into the 10x Genomics
Single Cell chip (10x Genomics, #PN-1000120) along with gel beads
and reverse transcription master mix from the Single Cell 50 v1.1
Chemistry Kit (10x Genomics, #PN-1000165). The chip was run
on the 10x Chromium Controller using the standard program to
produce complementary DNA, which was then amplified and
used for Gene Expression (GEX) library generation. All single-cell
GEX libraries were sequenced using an Illumina NextSeq 2000
sequencer.
scRNA-seq data preprocessing
Raw sequencing data underwent demultiplexing, barcode process-
ing, read alignment, and UMI counting using the 10x Genomics
CellRanger pipeline (version 5.0) with default parameters. Reads
were aligned to the prebuilt human genome reference included in
Cell Ranger (GRCh38). After filtering to exclude low-RNA content
droplets, a gene-barcode matrix was generated for each sample con-
taining counts of confidently mapped, non–PCR-duplicate reads.

To remove technical artifacts arising from cell-free RNA profiles
from our sequencing data, ambient RNA decontamination was per-
formed on all samples using the CellBender software package (52).
In brief, the raw counts matrix and expected cell count for each
sample were provided as input to the remove-background module
of CellBender, which uses an unsupervised deep-generative model
to distinguish empty droplets from cell-containing ones. Expected
cell count was derived from the estimate generated by Cell Ranger.
All samples were run using the “ambient” model and default set-
tings of 150 training epochs and false-positive rate of 0.01. Tran-
scripts assigned to empty cells were iteratively detected and
removed from the raw counts matrix by remove-background, yield-
ing a “background-subtracted” cleaned counts matrix as output.

To remove multiplet artifacts caused by droplet encapsulation of
more than one cell, we then performed doublet detection and
removal on the CellBender-cleaned counts matrix using the Scrub-
let package (Python, version 0.2.2) (53). An expected doublet rate of
0.06 and manually selected doublet score thresholds were used to
separate singlets from neotypic doublets in the resulting bimodal
score distribution graphs. Presumed doublets were removed to
create an ambient RNA-free, singlet-only cleaned counts matrix
for downstream analysis. All further quality control, dimensionality
reduction, unsupervised clustering, and differential expression
analyses were performed using the Seurat R package (version
4.0.6) (54).
Cell type clustering and across-sample integration
Before clustering, the 16 datasets (one unsorted and one CD45+
sorted per sample) were merged into a single Seurat object. Cells
with fewer than 200 genes or greater than 25% counts representing
mitochondrial genes were removed from each sample. Genes de-
tected in fewer than three cells per sample were also removed.
The raw counts data were then normalized and scaled using the
default log-normalization approach from the R package Seurat
(version 4.0.6) (54).

Linear dimensional reduction was performed on the integrated
and normalized counts matrix by running principal components
analysis (PCA) on the 5000 most highly variable genes in our
dataset. The first 30 principal components were used to perform
Louvain clustering with a resolution parameter of 0.4. Uniform
Manifold Approximation and Projection (UMAP) was then per-
formed using the same principal components to visualize prelimi-
nary cell clusters from the nonintegrated dataset in two-
dimensional space.

To mitigate technical and biological variation between samples,
the merged dataset was integrated using the R package Harmony
(version 0.1.0), with patient of origin as the primary source of var-
iation (55). Harmony uses the PCA embeddings for each cell to it-
eratively generate multisample clusters, penalizing clustering
arrangements that contain clusters with one or few samples repre-
sented. The final integrated dataset included 24,048 cells from the
eight-tumor cohort.
Cell type visualization, and identification
To determine cell types within each cluster, differential gene expres-
sion analysis was performed by comparing cells from each cluster to
all other cells using a two-sided Wilcoxon rank-sum test with
applied Bonferroni correction for multiple comparison testing.
Top differential genes within each cluster were used to assign cells
into broad tumor and immune categories. For subclassification of
immune cell types, lymphoid and myeloid cells were subset from
the integrated dataset and clustered and UMAP projected using
30 principal components. The same differential gene expression
analysis was used to identify T cell and myeloid types at higher res-
olution. CD8+ T cells and TAMs were further reclustered and repro-
jected to conduct similar cellular dissection.
Identification of cancer cells
To identify malignant cells, we first integrated both non–CD45+-
sorted and CD45+-sorted datasets from the same tumor to generate
a combined expression matrix. Each sample underwent Louvain
clustering and UMAP projection to identify PTPRC+ (CD45+)
and PTPRC− clusters. We then used inferCNV (R, Terra implemen-
tation) to estimate the CNV profile of each log-normalized sample
using all PTPRC+ cells as the reference group and all PTPRC− cells
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as the observation group. NET-related marker gene expression and
presence of inferred copy number alteration as determined by in-
ferCNV were combined to identify “tumor” cells within our cohort.
Differential expression, GSEA, and signature scoring
To minimize the effect of patient-specific expression patterns on
our differential gene expression analysis of GEP-NET cells across
anatomical subtypes (Fig. 2C), we averaged the expression of
genes from all tumors from the same primary site of origin (i.e.,
pancreas or small intestine) and compared the two transcriptional
profiles. To compare the transcriptomic profiles of cells from a
paired primary (sinet2) and metastatic (sinet3) tumor set, differen-
tial gene expression analysis was performed using a two-sided Wil-
coxon rank-sum test with Bonferroni correction applied. The
log2(fold change) values for each gene were used as ranks for pre-
ranked GSEA, which was performed using the fgsea R package
(version 1.20.0) (56). GSEA was performed using all HALLMARK,
Kyoto Encyclopedia of Genes and Genomes, and Gene Ontology
Biological Process gene sets from version 6.2 of the MSigDb as
input (57). Significance level was set at P < 0.05 and false discovery
rate < 0.25.

Single-cell signature scoring was performed using the VISION R
package (version 3.0.0) (58). Progenitor exhaustion and terminal
exhaustion signatures derived from Bi et al. (30) were used to
score CD8+ T cells from all tumors (Fig. 3F). Known macrophage,
monocyte, and DC markers were used to generate custom gene sig-
natures, which were then used for VISION scoring of the NET
myeloid compartment (Fig. 3B).
SCENIC analysis and regulon inference
To identify differentially active GRNs in tumor cells across GEP-
NETs, we performed SCENIC analysis using the recommended
pipeline provided with the pySCENIC implementation (https://
github.com/aertslab/SCENICprotocol/blob/master/notebooks/
PBMC10k_downstream-analysis.html) (59, 60). We first performed
GRN inference using the multiprocessing implementation of Ar-
boreto to run GRNBoost2 on the count matrix containing averaged
expression of tumor cells from each sample. We then ran the
SCENIC implementation of cisTarget to predict regulons from
the TF adjancencies matrix produced by GRNBoost2. Last, we
used AUCell to generate regulon specificity scores for each tumor.
As recommended in the pySCENIC documentation, we selected the
top five regulons in each tumor ranked by AUC, then plotted the
scaled scores for these regulons by tumor.
Metamodule scoring
To generate metamodule scores for TAMs in Fig. 4, we first used
Seurat’s FindAllMarkers function to identify TAM cluster–specific
marker genes. We then used the average log2(fold change) of genes
in our differential expression analysis as a ranking metric for GSEA
analysis on all TAMs using the HALLMARK genesets from the
MSigDB. Four of the most enriched pathways from this analysis
were selected as biologically relevant metamodules. To score each
TAM for expression of these four metamodules, we implemented
the method developed in Neftel et al. (34) using the scrabble R
package. In brief, a signature score (SC) is calculated for each cell
by averaging the relative expression of the signature genes in that
cell, then subtracting the average relative expression of a control
geneset in the same cell. The control geneset is defined as previously
(34). All cells were scored for each of the four metamodules. The
position of each cell in the butterfly plot (Fig. 4C) was determined

by calculating [sign(SC1 − SC2)�log2(|SC1 − SC2| + 1)] for both x
and y coordinates.
Determination of CNV clonal structure
To determine the clonal variation between the primary (sinet2) and
metastatic tumor cells (sinet3) from the same patient with a siNET,
cells from both samples were processed using the pipelineCNA
function from the R package SCEVAN (61). The “subclones” pa-
rameter was set to “TRUE” to enable analysis of clonal structure
within each tumor. Heatmaps displaying inferred copy number
loss/gain across chromosomes 1 to 22 and showcasing the
number of inferred subclones were generated for each sample
through the SCEVAN pipeline. To identify pathways enriched in
clone 1 and clone 2 from the primary tumor (sinet2), differential
gene expression was performed comparing the pseudobulked ma-
lignant cells from each clone using Seurat’s FindAllMarkers func-
tion. The resulting differential gene list for each clone was ranked
by log2 fold change and used as input for GSEA using the fgsea
package (R, version 3.17).
Multiplex immunofluorescence staining and imaging
Multiplex immunofluorescence staining was performed on five
FFPE samples from our cohort using a BOND RX fully automated
stainer (Leica Biosystems). FFPE tissue sections of 5 μm thick are
baked for 3 hours at 60°C before loading into the BOND RX.
Slides are deparaffinized (BOND DeWax Solution, Leica Biosys-
tems, catalog no. AR9590) and rehydrated with series of graded
ethanol to deionized water. Antigen retrieval is performed in
BOND epitope retrieval solution 1 (pH 6) or 2 (pH 9), as shown
in table S2 (ER1 and ER2, Leica Biosystems, catalog nos. AR9961
and AR9640) at 95°C. Deparaffinization, rehydration, and antigen
retrieval are preprogrammed and executed by the BOND RX. Slides
are then serially stained with primary antibodies. Incubation time
per primary antibody was 30 min. Subsequently, anti-mouse plus
anti-rabbit Opal Polymer Horseradish Peroxidase (Opal Polymer
HRP Ms. + Rb, Akoya Biosciences, catalog no. ARH1001EA) is
applied as a secondary label with an incubation time of 10 min.
Signal for antibody complexes is labeled and visualized by their cor-
responding Opal Fluorophore Reagents (Akoya Biosciences) by in-
cubating the slides for 10 min. Opal Fluorophore 780 is paired with
a TSA-DIG amplification to ensure adequate and analyzable signal.
Slides are incubated in Spectral DAPI solution (Akoya Biosciences)
for 10 min, air dried, and mounted with Prolong Diamond Anti-
fade mounting medium (Life Technologies, catalog no. P36965)
and stored in a light-proof box at 4°C before imaging. The target
antigens, antibody clones, dilutions for markers, diluents, and
antigen retrieval details are listed in table S2.

Image acquisition is performed using the PhenoImager multi-
spectral imaging platform (Akoya Biosciences, Marlborough,
MA). Each slide is scanned at 20× resolution as whole-slide scan
images. These images are then accessible through Phenochart
viewing software (Akoya Biosciences) where four to eight 20×
regions of interest (ROIs) are selected. On the basis of well-staining
tissue availability, three to seven ROIs per sample were chosen for
analysis by a board-certified anatomic and molecular pathologist
specialized in tissue-based biomarker assays. ROIs were chosen
based on high tumor content; areas of necrosis, fibrosis, and
unusual vascular architecture were explicitly avoided.

After ROI selection and approval from a pathologist (S.R.), the
images are spectrally unmixed and analyzed within Inform 2.6
(Akoya Biosciences). The ROIs are subsequently segmented and
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quantified for expression of each marker using the Inform analysis
tools. Data tables are exported from Inform and run through a
custom data extraction pipeline to obtain cell population densities
(number of cells per square millimeter) for each marker and/or
combinations of markers.

Supplementary Materials
This PDF file includes:
Figs. S1 to S5
Tables S1 and S2
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